Lesson 1 Concentration
Concentration can be expressed in many ways, as shown on the right. It is however, an amount of substance present in a given amount of sample, the units in which the sample and substance are measured in may vary.

Concentration $=\frac{\text { amount }}{\text { Volume }}$

For example :

- $\% \mathrm{v} / \mathrm{v}$ is used when one liquid substance is mixed in with another liquid. Eg: wine bottles are labelled with the
 concentration of ethanol clearly shown in \%v/v. A concentration of $13 \% \mathrm{v} / \mathrm{v}$ indicates 13 mL of ethanol in 100 mL of wine.
- $\% \mathrm{w} / \mathrm{v}$ or $\% \mathrm{~m} / \mathrm{v}$ is used to show the concentration of a
 solid substance present in a liquid. Eg: a 15% w/v solution of salt contains 15 g of salt in 100 mL of solution.
- ppm mg / L or is used to measure small quantities of air borne or water pollutants. Eg: the lead concentration of a sample of waste water is 410ppm. That means $410 \mathrm{mg}(0.41 \mathrm{~g})$ of lead is present in every kg of sample waste.
- Molarity ($\mathrm{mol} / \mathrm{L}$) is used to measure the concentration of chemical compounds, with a known formula, in $\mathrm{mol} / \mathrm{L}$.

Here the unit conversion is key to solving the many questions that can be asked and the ability to transform the formulae shown on the right.

Let's get straight into some examples.
1 A pure sample of NaCl was carefully weighed at 0.585 g and dissolved in exactly 300 mL of water. Find the
 concentration of the resulting NaCl solution in: (assuming that the salt has no impact on the volume of the final solution)

- Molarity (mol/L)

Pay close attention to the units the concentration is asked for
step 1 Find the mol of NaCl
$\Rightarrow n_{\text {Nacl }}=$ mass $/$ Formula mass $=0.585 \mathrm{~g} / 58.5 \mathrm{~g} / \mathrm{mol}=0.100$
Step 2 divide the mol of salt by the volume (L) of water.
$=>0.100 \mathrm{~mol} / 0.300=0.333 \mathrm{M}$

- \%w/v
$=>(0.580 \mathrm{~g} / 300 \mathrm{~mL}) \times 100=0.193 \% \mathrm{w} / \mathrm{v}$
$-\% \mathrm{w} / \mathrm{w}$ (assuming the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$)
$=>(0.580 / 300 \mathrm{~g}) \times 100=0.193 \% \mathrm{w} / \mathrm{v}$
- ppm by mass.
$=>\mathrm{mg} / \mathrm{L}=580 / 0.300=193 \mathrm{ppm}=$

We can transform each formula to calculate the amount of a substance or the volume of a sample depending on how the question is stated.
Example:

- What is the mass, in grams, of KCl in 250 mL of a 0.245 M KCl ?

Step 1 Transform the formula to find the amount in
Molarity $(\mathrm{mol} / \mathrm{L})=\frac{\text { amount }(\mathrm{mol})}{\operatorname{volume}(\mathrm{L})}$
mol.
=> Concentration $(\mathrm{mol} / \mathrm{L}) \times$ Volume $(\mathrm{L})=\mathrm{mol}$
$=>0.245 \mathrm{~mol} / \mathrm{L} \times 0.250 \mathrm{~L}=0.06125$
Step 2 Find the mass of KCl
\Rightarrow mass $(g)=$ mol \times formula mass $=0.06125 \times 74.6=4.57 \mathrm{~g}$

- What volume, in mL , of a 1.32 M KCl contains exactly 23.5 g of KCl ?

Step 1 Transform the formula to find the volume in litres.
=> Volume (L) $=\operatorname{amount}(\mathrm{mol}) /$ concentration($\mathrm{mol} / \mathrm{L}$)
Step 3 find the mol of KCl
$=>23.5 \mathrm{~g} / 74.6=0.315 \mathrm{~mol}$
Step 4 find the volume in litres
$=>$ Volume $(\mathrm{L})=0.315(\mathrm{~mol}) / 1.32(\mathrm{~mol} / \mathrm{L})=0.239 \mathrm{~L}=239 \mathrm{~mL}$

- A bottle is wrongly labelled as containing 0.75 M KCl . The bottle should have included the concentration in \%w/v. What concentration, in \%w/v, of KCl should be shown?
=> Convert $0.75 \mathrm{~mol} /$ Litre into $\% \mathrm{w} / \mathrm{v}$.
Step 1 Convert 0.75 mol into mass of KCl in one litre of solution
- $\quad=>$ mass $=$ mol \times formula mass $=0.75 \times 74.6=55.95 \mathrm{~g}$

Step 2 Convert to \%W/V
$=>55.95 \mathrm{~g}$ exist in $1000 \mathrm{~mL}(\mathrm{~L})$
$\Rightarrow \% w / v=(55.95 / 1000) \times 100=5.595 \% w / v$

Try the following exercises.
a) What mass of NaCl should be placed in 400 mL of pure water in order to produce a solution of NaCl with a concentration of $11.5 \% \mathrm{w} / \mathrm{v}$? Assume the salt does not add to the volume of the solution.
$=>\operatorname{mass}(g)=11.5 \% \times$ volume in mL
$\Rightarrow \operatorname{mass}(\mathrm{g})=(11.5 \mathrm{~g} / 100 \mathrm{~mL}) \times 400=46.0$ grams
b) 13.00 mL of pure ethanol is placed in a measuring cylinder and made up to 50.0 mL with pure water. Calculate the concentration of the resulting solution in $\% \mathrm{v} / \mathrm{v}$.
=> total volume $=50.0 \mathrm{~mL}$
$\Rightarrow \% v / v=(13.00 \mathrm{~mL} / 50.0 \mathrm{~mL}) \times 100=26.0 \% \mathrm{v} / \mathrm{v}$
c) A bottle labelled $0.95 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ is to be relabelled with the concentration in $\% \mathrm{w} / \mathrm{v}$. What should the new concentration read on the new label?
$\Rightarrow>\mathrm{mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in one litre of solution $=0.95 \mathrm{~mol}$
$=>$ mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in one litre of solution $=0.95 \mathrm{~mol} \times 106.0 \mathrm{~g} / \mathrm{mol}=100.7 \mathrm{~g}$.
$=>\% \mathrm{w} / \mathrm{v}=(100.7 \mathrm{~g} / 1000 \mathrm{~mL}) \times 100=10.07 \% \mathrm{w} / \mathrm{v}$
d) What is the concentration, in $\% \mathrm{w} / \mathrm{v}$, of lead ions found in a 350 mL sample of waste water labelled as having a concentration of lead at 505 ppm ?

$$
\begin{aligned}
& \Rightarrow>p p m=m g / L \\
& =>505=505 \mathrm{mg} / \mathrm{L} \\
& \Rightarrow>(505 \mathrm{~g} / 1000 \mathrm{~mL}) \times 100=50.5 \% \mathrm{~W} / \mathrm{V}
\end{aligned}
$$

e) What volume, in litres, of solution of a $1.24 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ contains exactly 55.2 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?

$$
\Rightarrow>m o l ~ o f ~ \mathrm{Na}_{2} \mathrm{CO}_{3}=55.2 / 106.0=0.521
$$

$$
\Rightarrow>V(L)=\text { mol } X \text { concentration (mol/L) }
$$

$$
\Rightarrow \mathrm{V}=0.521 \mathrm{~mol} X 1.24 \mathrm{~mol} / \mathrm{L}=0.646 \mathrm{~L}=646 \mathrm{~mL}
$$

